
 

 

 

 

 

SENL 
MARCH 2007 

 

 

Sprezzatura’s Electronic Newsletter 

For Revelation developers by Revelation developers 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

 

Contents 
WELCOME............................................................................................................................................. 3 

COMPILER ENHANCEMENTS – ANDREW P MCAULEY ............................................................................. 5 

Displaying comments....................................................................................................................................................8 

Saving expanded code ................................................................................................................................................10 

Ensuring comments remain in Outputted Code .........................................................................................................11 

Squeezing the last ounce of performance from a routine..........................................................................................12 

Ensuring Repository Tracking .....................................................................................................................................13 

Multiline Concatenation/Nested inserts ....................................................................................................................15 

WINDOWS COMMON (AND NOT‐SO‐COMMON) CONTROLS AND OPENINSIGHT – CARL PATES............ 16 

WINCONTROL and the Windows ClassName..............................................................................................................16 

The OI CLASSNAME property......................................................................................................................................17 

Window Messaging ....................................................................................................................................................17 

Creating a WINCONTROL control................................................................................................................................18 

Using a WINCONTROL.................................................................................................................................................18 

Wrapping a WINCONTROL..........................................................................................................................................19 

Example wrapper ‐ zzx_ProgressBar()................................................................................................. 20 

Finding out more ........................................................................................................................................................21 

MAIL MERGING FROM ADVANCED REVELATION – ANDREW P MCAULEY ............................................. 22 

Creating the data file to merge from..........................................................................................................................22 

Creating the merge document....................................................................................................................................22 

Record the actual merge macro .................................................................................................................................26 

Drive the production of the Merge from AREV ..........................................................................................................28 

CELEBRITY INTERVIEW ‐ BRYAN SHUMSKY  ‐ REVELATION R&D – SENIOR DEVELOPER.......................... 29 

ZZ_IDE_DUMP – A NEW UTILITY – AARON KAPLAN.............................................................................. 31 

AN INTRODUCTION TO THE USE OF OLE CONTROLS FROM OPENENGINE – PART 2 ‐ ANDREW MCAULEY35 

Exploring Using Macros ..............................................................................................................................................35 

ChangeFileOpenDirectory .....................................................................................................................................37 

Documents.Open ..................................................................................................................................................39 

ActivePrinter..........................................................................................................................................................40 

Application.Printout ..............................................................................................................................................41 

Performing a Mail Merge............................................................................................................................................41 

Starting the OLE Application..................................................................................................................................43 

Conclusion ..................................................................................................................................................................52 

CHANGING UNIVERSAL DRIVER FILES TO 2.1 FORMAT – AARON KAPLAN ............................................. 55 

PERIPHERAL TRIVIA............................................................................................................................. 56 

COPYRIGHT NOTICE ....................................................................................................................................................56 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 3 of 56 

Welcome to this issue of SENL! We know it’ll be a slight shock getting this quote “so soon after the last issue” but 

we had so many requests to get the OLE article finished and so many cool things have been happening that we thought 

we’d get this out quickly and then sit back and review how we’re going to proceed with the journal from hereon in. 

We’re not long back from conference and as has been reported this was one of the most successful conferences ever. 

The location was fantastic – Seattle has a wealth of things to interest people like myself who are interested in decent 

tasting beers – and the T‐Shirt stores give Sacramento a run for its money. (Though Sacramento wins by a nose). 

Breakfast at Pike’s Place Market is such a cool way to start the day and the range of good food places was awesome – 

“awesome like a hot dog” to quote an English comedian. … “And your President's going to be going (American voice) 

"Can you tell me, astronaut, can you tell me what it's like?" "It's awesome, sir." "What, like a hot dog?" "Like a hundred 

billion hot dogs, sir." – Eddie Izzard. 

The conference itself had a range of technical information ranging from the introductory through to the seriously 

technical. This time it seemed that people had done their homework more on the sort of presentations that they’d like 

to see and unlike in previous years no one was seen to walk out of a technical track complaining that the presentation 

was too technical.  

The social side of the conference once again added extra value as people we hadn’t seen for years appeared. It’s always 

fun hanging with our peers and this conference was no exception. The themed party this year provided an excuse for a 

noisy clique of Sprezz bods and ***** bods (names changed to protect the guilty) to hang around practicing their 

cockney rhyming slang and out joking each other. By the end of the evening onlookers were drawn to the group like 

smaller planets being sucked into a black hole. We haven’t laughed so much in a long time – thanks to those who 

helped make the evening and all y’all know who you are ☺  

We’ve had a number of requests to publish our proceedings publicly from people who weren’t able to attend the 

conference for various reasons – for these people we have some bad news and some good news! 

The bad news is that it is policy that Conference Presentations aren’t released to non‐attendees until some 

considerable time has elapsed since the show. This makes sense if you think about it. The presentations are created for 

the show – that’s the driving force behind their production. People take the time and trouble to attend the show to get 

this information. The show costs money and a great deal of time to put on and as a rule doesn’t even break even for 

Revelation. The less people who go the more of a loss is made. If you didn’t need to attend to get the materials then the 

show would make even more of a loss as more delegates stayed away. This would probably lead to cancellation of 

sponsorships and ultimately cancellation of the show. In turn this means that no one would prepare presentations – so 

everyone would lose out! 

The good news is that Revelation have given us permission to document the meat of one of the most technical 

presentations of the conference – Carl’s presentation on using Windows Common Controls in OI 7.1+. The reason for 

this is that delivering “Windows Standard” software is necessary in today’s climate and people expect certain features. 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 4 of 56 

With Carl’s help you’ll be able to spruce up your applications in no time! So a big vote of “Thanks” to Revelation for 

their permission on this! 

As I type we’ve just started the beta cycle for version 8.0 of the product and this truly is a landmark release for a LOT of 

people. One of the most significant inclusions is going to be AREV32 – a console app version of AREV but with all of the 

16 bit DOS limitations removed. So if you’ve got a client who just WOULDN’T move to OpenInsight because of the work 

involved you can finally move them without changing them! Put simply, AREV32 uses OpenInsight’s “CTO” technology 

to pretend to be an AREV app running under OI. That immediately removes the 64K limit and the EMS problems! There 

is very little work involved in actually moving to AREV32 and more details will be made available as we get closer to the 

release date.  Suffice to say for now that your clients will have to buy Developer Class licenses of OI and that they’ll then 

be running AREV within OI. That ideally positions them for a phased transition to OpenInsight! 

To celebrate the introduction of AREV32 we’ve decided to include an AREV tip to complement our OLE article – multiple 

feline fur removers and all that. This is a cute little trick which allows you to perform mail merges from AREV using 

Word for Windows… didn’t Cogent do something with WordPerfect like that all those years ago? Plus ca change plus ca 

la meme chose… 

The toolset has been extended to take advantage of the addition of Drag and Drop into the product and finally now that 

we’re in Beta Carl is free to catch up on other projects. And we’ve got a LOT of partially finished projects here at Sprezz 

Towers… one of these is showcased in Aaron’s article on our new Linear Hash Dump utility. We’re just working out new 

licensing packages and expect to be releasing a slew of free software into the Rev community by summer.  

We’re starting to hear rumours of a UK Revelation Conference to be held in London in May. This will only be a single 

day and a single track apparently but it is hoped to have at least 5 presentations – at least 3 of which will be seriously 

technical.  So if any of our global readership are planning a London holiday this year think about May! 

It would seem that not everyone is on the Revelation EMEA newsletter mailing list because at the Sprezz presentations 

in Seattle people kept asking about code snippets such as $USES. These compiler enhancements were the subject of a 

technical article in the August ’06 newsletter. As the authors of the original piece we’ve expanded it slightly for this 

SENL but you might want to check out the Newsletter back issues in case there’s anything else you’ve been missing! 

They can be found at http://www.revsoft.co.uk/devnewsletters.htm.  

In closing it will doubtless come as a huge surprise to you after reading this SENL that we’ve finally gotten around to 

buying SnagIt for screen dumping – what a cool tool! So our apologies in advance if we’ve become a little “snap happy”.  

Enjoy this SENL we truly hope that you’ll find something in it that is of value to you. 

Regards 

Your friends at Sprezz



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 5 of 56 

Compiler Enhancements – Andrew P McAuley 

The compiler is the compiler is the compiler and has been pretty much the same since the introduction of Revelation B. 

Sure along the way new opcodes have been added to support new system common and new at variables but it has 

remained pretty much the same until very recently! The release of 7.2.1 brought with it a number of compiler 

enhancements which serve to make life easier for the serious developer. This article documents these changes. 

Precompiling 

The introduction of the CTO provided the much needed excuse to enhance the compiler with precompiling technology. 

This is something that we’ve been asking to have included in the compiler since the year dot. Our motives are a tad 

obscure – reasoning it would be fun to allow people to compile in their native language for example. However the CTO 

provided a practical excuse for its inclusion. 

 Put simply precompilation allows the developer to stipulate that a program (or programs) be run before the main 

compiler is run. This allows the developer to make changes to the program before it is compiled. As a simple example of 

what could be achieved, the developer could write a program that translated French words into their English equivalent 

before compiling.  

A new row has been added into SYSENV called CFG_PRECOMPILER. This is a value mark delimited list of programs to call 

as a precompiler. Note that there is no practical limit to how many such precompilers can be called but bear in mind 

that once the programs are entered into CFG_PRECOMPILER they will be called for the compilation of all events and 

programs.   

If you’d like to be a little more selective in when and if you call your precompiler you may make use of the new 

PRECOMP #PRAGMA predirective. This allows you to specify that a specific program should be called as a precompiler 

when compiling this routine or event. 

The syntax is  

 #PRAGMA PRECOMP PROGRAMNAME 

In all cases the precompiler should be written to accept two parameters. The first is the source code itself and the 

second is the name of the routine being compiled. So if you decided that you were bored of always having to declare 

certain functions and subroutines you could write a precompiler such  as this :‐ 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 6 of 56 

Note that the debug is there just for the purposes of this article! So now let’s write a routine to make use of this 

precompiler :‐ 

 

And let’s compile this routine – which because of the above debug will drop us into the debugger. 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 7 of 56 

A little side point to mention here that will get cheers from a number of developers – the debugger now remembers 

your MDI child placement preferences between sessions. So we’ll step over the next two lines and see our code 

inserted into the output. 

 

And carry on – compilation completes. 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 8 of 56 

So we haven’t declared Get_Property as a function ourselves – nor have we declared MSG as a subroutine. Yet let’s go 

to the system monitor and RUN the program and voilà! No errors:‐ 

 

Displaying comments  

If you wish to display comments during compilation you can use the COMMENT pragma which has the syntax: 

 #PRAGMA COMMENTS Comments here along with replaceable placeholders 

The replaceable place holders are: 

Place Holder Description
%ID% The name of the current routine
%L% The current line number 
%TD% The time and date 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 9 of 56 

At the moment this only works with the old editor not with the  Editor+. So revisiting the code above and adding 

comment pragmas then compiling we get 

 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 10 of 56 

Saving expanded code 

If you wish to save off the final result of all of the precompilation options so that you may examine it  you may use the 

OUTPUT pragma. This directs OpenInsight to save the ultimate program that will be compiled into the specified file and 

row. The syntax is: 

 #PRAGMA OUTPUT FileName RowId 

 

And the resultant code in SYSLISTS 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 11 of 56 

Ensuring comments remain in Outputted Code 

By default the system removes the text of comments before submitting the program to the compiler. This makes 

compilation slightly faster as the compiler does not have to process comment strings. This means that your saved 

OUTPUT code won't contain comments. To ensure the comments remain you use the COMMENTCOLLAPSE pragma. 

This has a value of ON or OFF. The default setting is ON. To ensure comments remain use OFF: 

 #PRAGMA COMMENTCOLLAPSE ON|OFF 

So with Collapse ON (the default) 

 

The resultant output is 

 

And with it OFF 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 12 of 56 

The resultant output is  

 

 Squeezing the last ounce of performance from a routine 

When programs are compiled a linemark is inserted between each line to assist in debugging. This means that a 1,000 

line program will have 1,000 linemark opcodes. If performance is critical then these may be removed using the 

LMCOLLAPSE pragma. This takes an ON or an OFF argument and the syntax is: 

 #PRAGMA LMCOLLAPSE ON|OFF  

This is especially useful when $Inserting large blocks of code. When debugging this would stop at each line of the 

$Insert. Using LMCOLLAPSE would allow the programmer to step over the $Insert with one keystroke. For example: 

 /// Turn on linemark collapse for inserted code 

 #pragma lmcollapse on 

 $insert sysprocs, fserrors_100 

 $insert syserrors_1000 

 /// Turn off the $insert linemark collapse  

 #pragma lmcollapse off 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 13 of 56 

Ensuring Repository Tracking 

The compiler has been enhanced to keep track of the "Uses" relationship when a subroutine or function is called. 

Historically this only happens when the DECLARE statement is used. Now the act of CALLing a routine ensures that it is 

tracked.  

So if we were to look at the Entity Relationships window for the DELETEME object code we’d see that it uses several  

stored procedure executables :‐ 

 

If you wish to link in other entities to ensure complete deployment using the RDK or checkout you can now tell the 

compiler that this routine uses specific entities. For example, say your program is referenced in an external document 

and you want to ensure that this document is deployed with the program. You may now accomplish this using the 

$USES compiler predirective to ensure that this is tracked in the repository.  

This has the syntax: 

 $USES EntityID 

where entity ID can have one of the following three forms: 

 APPLICATION_ID*TYPE*CLASS*ENTITYID where APPLICATION_ID is the application name 

 @APPID*TYPE*CLASS*ENTITYID where the literal @APPID will be replaced with @AppId<1> 

 TYPE*CLASS*ENTITYID where @AppId<1> will be put on the beginning for you. 

For example: 

 $USES @APPID*DOC*WINWORD*CONVERSIONUTILITY 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 14 of 56 

 

Compiling this and examining the Entity Relationships gives me 

 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 15 of 56 

Multiline Concatenation/Nested inserts 

Two longstanding compiler bugs have been fixed. It is now possible to nest inserts without messing up line counts. In 

addition you may now have multiple lines concatenated into a single line to improve program legibility.  

For example: 

  

Which compiles as 

 

So as you can see – quite a lot of movement on the compiler front! 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 16 of 56 

Windows Common (and not‐so‐common) Controls and OpenInsight – 

Carl Pates 

Out of the box OpenInsight (OI) provides developers with access to all the essential user interface controls, such as edit 

controls, listboxes, checkboxes and so on. For the majority of tasks this is quite sufficient, but a situation invariably 

arises when the standard set of control types is just not enough and a more elegant solution must be found – the user 

interface must be extended. 

In some cases this may simply be a matter of using one of the many “new” controls supplied with 32‐bit and 

subsequent versions of Windows (the so‐called “Common Controls” such as Progress Bars and TreeView controls) while 

in other cases it means using a “custom control” supplied by a 3rd party and written in another lower‐level toolset such 

a Visual C++ or Delphi.  

Currently OI developers have the following options for extending the user interface: 

 Wait for Revelation to implement and expose the required control   
 Use an OLE control  
 Write a DLL to implement or wrap the desired custom control   

With the release of OI 7.2 a new method of embedding controls has been added to OI that provides access to virtually 

any Windows control, or in the case of OIL, any control that is supported by the MainWin runtime environment.  This is 

achieved by using a new OI control type – the WINCONTROL control.  Support for this feature has been significantly 

enhanced for OI 8.0. 

WINCONTROL and the Windows ClassName 

Every control in Windows is based on a predefined template called a “Window Class”.  The class has a unique name, 

called the ClassName, used to identify it.  When an application wishes to create a control it specifies the ClassName as 

part of the creation process.  The OI WINCONTROL does something similar:  It allows OpenInsight to create a control 

based solely on its Windows ClassName, rather than the OI‐specific name which is normally used (and which is 

translated internally to a Windows ClassName at runtime in any case). 

Some examples of Windows and their actual class names are: 

Control Type OI Type Name Windows ClassName 
Single line edit control EDITFIELD Edit
Multiline edit control EDITBOX Edit
Bitmap BITMAP Static
Rich Edit RICHEDITBOX RichEdit20W 
Tab control TABCONTROL SysTabControl32 
Progress Bar n/a msctls_progress32 
OpenInsight Form WINDOW RTI_PrCl

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 17 of 56 

Before an application can use a Window Class it must “register” it.  This makes sure that all of the above class 

information is associated with the ClassName when used.  In the case of OpenInsight the following applies: 

All the basic GUI controls are available to all Windows applications.  There is no need to register them. 

OI registers the Common Controls at start‐up so there is no further work for the developer to do to use them. 

Custom control classes must be registered with OI before they can be used.   Most custom control authors provide an 

easy way to do this via exported function in a DLL that is called before use. 

The OI CLASSNAME property 

OI 8.0 saw the introduction of a new property called CLASSNAME which returns the Windows ClassName of a control.  

Prior to this the only way to find it was using the GetClassName() Windows API function. 

Window Messaging 

Windows is an event–driven system, which means that controls wait for input and data to be passed to them and then 

respond. This process is enabled by a low‐level interface that applications can interact with known as the “Window 

Message” interface.   

Input is sent to a control in the form of a “message” which then passes it to a special function known a “Window 

Procedure” (or “WndProc”) to be handled.  Every window class has a window procedure, and every window created 

with that class uses that same window procedure to respond to messages.  

The system sends a message to a window procedure by passing the message data as arguments to the procedure which 

then interprets and processes them accordingly.  

A Windows Message is comprised of four components: 

The target window handle.  This identifies the control the message is sent to and therefore the window procedure used 

to process it.  

The message ID.  This is a numeric value that identifies the purpose of the message. 

Two numeric parameters that specify additional information pertaining to the message, such as the location of data.  

Their exact meaning depends on the message itself. 

Within OI we have the capability to use the Windows API SendMessage and PostMessage functions to communicate 

with the control and the WINMSG event to listen for messages that are sent to the controls we create on our forms.  

Armed with this we now have the basic tools we need to access and implement WINCONTROL functionality. 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 18 of 56 

Creating a WINCONTROL control 

The process for creating a WINCONTROL control is fairly simple, although not as easy as it might be due to the fact that 

it is not yet supported by the OI Form Designer.   There are four simple steps: 

Build a control structure or copy one from an existing control (e.g. from an ORIG_STRUCT property) 

Change the control type to: 

WINCONTROL.<classname> 

(where <classname> is the window ClassName of the desired control) 

Pass the structure to Utility( “CREATE” ) 

Update the Window Common area 

Example: Creating a Win32 ProgressBar 

  

$insert ps_Equates 

 equ PROGRESS_CLASS$ to “msctls_progress32” 

 * // myCtrl is a simple editline used a “placeholder” 

 ctrlStruct = get_Property( myCtrl, “ORIG_STRUCT” ) 

 ctrlStruct<0,PSPOS_TYPE$> = “WINCONTROL.” : PROGRESS_CLASS$ 

 call utility( “DESTROY”, myCtrl ) 

 call utility( “CREATE”, ctrlStruct ) 

 

Using a WINCONTROL 

To use a WINCONTROL control we use the Windows API SendMessage or PostMessage functions, both of which are 

already prototyped for us in OI.  Using either involves the following steps: 

Get the target control HANDLE 

Determine the message ID 

Determine the message parameters 

Send the message 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 19 of 56 

Much of the work using a WINCONTROL involves trawling Microsoft’s documentation to find what styles and messages 

you need to use to interact with it.  Remember that you’re operating much “closer to the metal” when using a 

WINCONTROL than you are when you’re using a standard OI control so you’ll be doing some extra legwork.  One thing 

you’ll notice about the MS documentation is that it mostly refers to constants by their name – to find their actual value 

you’ll need to look in the Windows header files that are supplied with Windows Platform SDK (and which you can 

download freely from the Microsoft website). 

For the following example we had to consult both the ProgressBar documentation on the MSDN website and the 

commctrl.h header file. 

Example: Using the Win32 ProgressBar control to set the bar position 

  

 equ PBM_SETPOS$ to 0x0402 ; * from commctrl.h 

 * // myCtrl is a WINCONTROL progress bar 

hwndCtrl = get_Property( myCtrl, “HANDLE” ) 

 newPos = 50 

 call sendMessage( hwndCtrl, PBM_SETPOS$, newPos, 0 ) 

 

Wrapping a WINCONTROL 

One consequence of using WINCONTROL controls is that it may begin to make your code look cluttered and complex – 

they certainly don’t have the clean get/set property interface offered by “normal” OI and OLE controls for example. 

However, that doesn’t stop you from providing your own wrapper and here at Sprezzatura this is exactly what we’re 

doing.  For each WINCONTROL type that we want to use we create the following: 

 A core routine to encapsulate all the Utility and Windows API SendMessage calls.   

 A “Get Property” style routine to provide a string‐based interface for accessing properties.   

 A “Set Property” style routine to provide a string‐based interface for updating properties. 

 A “Send Message” style routine to provide a string based interface for calling methods. 

The properties and methods that the last three property/method routines expose are translated into the appropriate 

window messages in the core routine.  Deciding what property and method names map onto which windows message 

is something you must decide when writing the wrapper, but common sense should dictate this in most circumstances.  

A good rule of thumb is that window messages that get and set persistent control data should be exposed as 

properties, while other window messages should probably be exposed as methods. 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 20 of 56 

Example wrapper ‐ zzx_ProgressBar() 

The zzx_ProgressBar package is Sprezzatura’s wrapper around the Win32 ProgressBar control.  It allows you to create 

and manipulate a progress bar control via a string based interface in the manner described above.  It is composed of 

four routines: 

zzx_ProgressBar() – the core routine 

prb_Get_Property – A “get property” function to extract Progress Bar property values.  This has exactly the same 
interface as the normal OI Get_Property function. 

prb_Set_Property – A “set property” function to update Progress Bar property values.  This has exactly the same 
interface as the normal OI Set_Property function. 

prb_Call_Method  ‐ A “Send Message” function to execute Progress Bar methods.  This has exactly the same interface 
as the normal OI Send_Message function. 

As part of this SENL issue we are releasing the source code for each of these routines so you can see how a 

WINCONTROL can be wrapped and used from within OI.  You will also find a window called PRB_TEST that 

demonstrates how to use the progress bar wrapper functions.  The source code is available on request from us at 

info@sprezzatura.com. 

 

 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 21 of 56 

Finding out more 

As you’ve probably guessed by now this is not a small topic.  However it is covered extensively on the MSDN website 

should you wish to find out more, specifically in the Win32 User Interface section on Windowing: 

 http://msdn2.microsoft.com/en‐us/library/ms632586.aspx 

And more specifically in the sections on Classes, Window Procedures, and Messages: 

 http://msdn2.microsoft.com/en‐us/library/ms632596.aspx 

 http://msdn2.microsoft.com/en‐us/library/ms632593.aspx 

 http://msdn2.microsoft.com/en‐us/library/ms632590.aspx 

If you download the Windows Platform SDK you will have access to the core Windows header files.  Probably the most 

useful ones in respect of OI and WINCONTROL programming are: 

 winbase.h 

 wingdi.h 

 winuser.h 

 commctrl.h 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 22 of 56 

Mail Merging From Advanced Revelation – Andrew P McAuley 

At a client site recently we were faced with creating a complex document to replace an existing report for legislative 

purposes. Needless to say the idea of cutting lots of PCL didn’t appeal and having had so much success with using OLE 

within OpenInsight my thoughts naturally turned to using Word for Windows as my reporting vehicle of choice. What 

would be required could be split into four discrete areas :‐ 

 

Creating the data file to merge from 

This is actually very straightforward. The easiest format for mail merging is simply a tab delimited text file, where the 

first line is the headings to merge and the second and subsequent lines are the data to merge. This can be created by 

hand using NOTEPAD.EXE for proof of concept. 

 

To create this we simple enter Name, press tab, Address1 press tab, Address2 press tab etc. 

Creating the merge document 

Again this is straightforward – simply create a standard mail merge document using as the data source the mail merge 

data file created above.  

We’ll use the Mail Merge Wizard provided with Word and whiz through the first three steps :‐ 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 23 of 56 

 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 24 of 56 

 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 25 of 56 

 

And save the Merge as c:\AREVM.DOC. 

Closing the document and then reopening it shows us a slight problem. The following Dialog appears 

 

This is undesirable because it will block our automated merge process later – so we need to prevent this dialog from 

appearing. . .  



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 26 of 56 

This can be done using REGEDIT to add the value SQLSEcurityCheck to the appropriate version of Office‐ this should be 

set to 0 :‐ 

 

Record the actual merge macro 

This macro needs to do the following actions :‐ 

 

Simply recording the macro was nearly enough but the last couple of lines highlighted also needed to be added to close 

the document and quit Word. Stating the obvious you can’t record a Macro which involves closing Word as then the 

Macro is killed! 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 27 of 56 

Sub AREVMERG() 

 

' 

' AREVMERG Macro 

' 

' Macro recorded 06/03/2007 by Andrew McAuley 

' 

    ChangeFileOpenDirectory "C:\" 

    Documents.Open FileName:="""AREVM.doc""", _ 

        ConfirmConversions:=False, ReadOnly:=False, AddToRecentFiles:=False, _ 

        PasswordDocument:="", PasswordTemplate:="", Revert:=False, _ 

        WritePasswordDocument:="", WritePasswordTemplate:="", Format:= _ 

        wdOpenFormatAuto, XMLTransform:="" 

    With ActiveDocument.MailMerge 

        .Destination = wdSendToPrinter 

        .SuppressBlankLines = True 

        With .DataSource 

            .FirstRecord = wdDefaultFirstRecord 

            .LastRecord = wdDefaultLastRecord 

        End With 

        .Execute Pause:=False 

    End With 

    ActiveDocument.Close _ 

    SaveChanges:=wdDoNotSaveChanges 

    Application.Quit 

End Sub 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 28 of 56 

Drive the production of the Merge from AREV 

This requires a knowledge of command line options for Word for Windows and knowledge of a new command called 

START that spawns a new command prompt. Our AREV command then becomes 

PCExecute "CMD /C START /MIN WINWORD /MMERGE" 

PcExecute Runs a DOS command
CMD Loads a command processor
/C Close the command processor after execution of command
START Spawn the new command session
/MIN Minimise it so it cannot be seen
WINWORD Launch Word for Windows

/MMERGE Run the Macro MERGE when it opens
 

Now all we have to do is update the merge data file from AREV and run the line above. Magically our mail merge will 

start to spew out of the printer without the user even being aware that Word has been invoked! 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 29 of 56 

Celebrity Interview ‐ Bryan Shumsky  ‐ Revelation R&D, Senior Developer 

Who are you? 

I'm Bryan Shumsky (though I imagine you knew that already :‐)) Perhaps here you're looking for a mini‐CV?  I've worked 

in the multivalue market since 1986, first as a database administrator, and then as a software developer.  Most recently, 

I worked for Via Systems as the Director of Engineering. 

Who do you work for? 

I'm a Revelation Software employee, and report directly to Mike Ruane. 

What is your role in the RevSoft community? 

I'm involved in development and maintenance of the base OpenInsight product, as well as the networking products.  I've 

had a lot to do with CTO (the Character to OpenInsight green‐screen interface), and AREV32, in addition to a whole set 

of tools that interact with them (OECGI2, OI4WEB, etc.) 

How long have you been involved with RevSoft? 

I've been working for RevSoft for the last 18 months.  Before that, I'd done some development work in AREV (!) as an 

application developer many, many years ago. 

Which products do you use? 

OpenInsight 8.0 and AREV32 primarily, though I'm rather unfamiliar with many of the GUI parts of the product (as I'm a 

relative newcomer from the 'traditional' multivalue field) but I’m also using Java, Visual Studio .NET, and older Visual 

Studio products for C, C++, and Visual Basic development.(Quite the polyglot – Ed) 

What do you most like about RevSoft products? 

Their openness and flexibility.  It makes it possible to do all kinds of things that neither the original developers, nor us, 

planned for in advance. 

What do you most dislike about RevSoft products? 

I don't think there's anything in particular ‐ if there was, I'd just go and change it :‐) 

If you HAD to use another database what would it be and why? 

Well, now, why would I HAVE to? :‐) 

What are your favourite 3 books and why? 

I'm an avid reader (mostly humour, science and science fiction), so it's very hard to just pick three.  However, my 'gut 

reaction' would be: 

Bill Bryson ‐ Notes From A Small Island ‐ as a fellow Anglophile, and an avid traveler, it's the perfect book for me; Isaac 

Asimov ‐ Foundation  ‐ an important and influential series in science fiction that I fondly remember first reading years 

(and years) ago; Hmmm, number 3...number 3...Oh, of course ‐ Advanced Revelation Developer Series System 

Subroutines 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 30 of 56 

What are your favourite 3 CDs/Albums and why? 

Meatloaf ‐ Bat Out Of Hell ‐ I guess I like the grand, operatic sound combined with rock and roll; Queen – Night at the 

Opera ‐‐ see above; Air ‐ Talkie Walkie ‐ I heard some of these songs on a car radio in a foreign country (I'm not even 

sure _which_ country anymore) and thought "my, that's catchy!" (I think it was "Sufin' on a rocket") And then had to 

spend a fair amount of time tracking down the album.   It's a very different sound. 

What are your three favourite films and why? 

Well, here I'm going to cheat, and assume by 'films' you also meant to include 'DVDs', as the wife and I don't get to go to 

the cinema that much any more.  And if we're going to stretch the definition a bit, I'll include: 

Buffy the Vampire Slayer (TV Series) ‐ pick any of the series 1‐7, they were all great; Star Wars (the original movie, later 

entitled Episode IV) ‐ yes, it's "bubblegum" science fiction, but it's FUN; Happy Feet ‐ I've always loved penguins, and (if 

we weren't living in Arizona) I would seriously consider building a penguinarium in our basement (if we had a basement) 

What event in history would you most like to have been present at? 

That's a tough one. When one thinks of 'historical events', they're either (a) not really a single, discrete moment in time, 

but rather a _series_ of events, or (b) they're usually not so much fun for the participants (though, then again, maybe 

that's just my American history talking...) How far back can I go?  Maybe the moment when life first started on Earth in 

some brackish pond... 

And finally Your motto/witty aphorism 

I guess my unspoken motto would be: Always decide where you're having lunch before you do any other business for the 

day.  (One must have ones priorities, after all...) 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 31 of 56 

ZZ_IDE_DUMP – A New Utility – Aaron Kaplan 

When we decided to talk about Linear Hash structures at the recent user conference in Seattle, we realised that 

OpenInsight doesn't ship with a DUMP window. Those of you who came to OpenInsight from Advanced Revelation will 

remember this utility. It was especially useful when GFEs needed to be fixed but it was also useful at other times – not 

least for understanding what was actually going on at the physical level of the linear hash file. Just for old time’s sake 

here’s what it looked like! 

 

In addition DUMP in AREV doesn’t understand the new Universal Driver file formats and so it can’t be used against this 

new structure. So for these two reasons ‐ the lack of UD support and the lack of ANYTHING in OpenInsight we thought 

we’d best write our own version of the dump! 

Naturally our starting point was the old AREV dump – after all if it ain’t broke why fix it? But we also wanted to take a 

bit more advantage of the Windows User Interface which provides more usable screen real estate. So as you can see in 

the following screen shot we have more space for the native file name. We can afford to put commas between our 

thousands and we can display the primary % and threshold % as decimals which the old dump had no room for. The 

other minor alteration to the header display is that we’ve added a spin control to allow the incrementing and 

decrementing of the size lock. The AREV DUMP used Reverse Video to good effect to show the header section of the 

frame and to highlight the individual row ids. We’ve extended this concept and used colours instead. As you can see the 

header section is in yellow, the row length is in blue, the key length is in cyan and the key is in green. Naturally these 

colours are user configurable as we’ll see later. 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 32 of 56 

 

The AREV DUMP routine permitted changing to a limited HEX mode. This was useful in itself but didn’t allow an 

overview of the entire frame in hex 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 33 of 56 

This is where the Windows Interface makes things so much easier.  Instead of showing a small section of the file in Hex 

we provide a second tab that allows the entire frame to be examined in hex. This makes the header structures much 

easier to understand.  

 

As you'd expect, we have options to fix GFEs and compress the overflow – although to ensure that we keep your data 

safe we use Revelation’s own routines to actually perform the work. 

 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 34 of 56 

Naturally we’ve also allowed for the ability to edit data.  By turning on editing (available from the menu) the system 

changes into edit mode.  Notice the icon change from a locked bolt to a pencil.  We wanted to ensure that editing was 

as “fool proof” as possible, so the system won’t allow you to edit a key – after all you might change it to something that 

hashes to another frame and thereby “lose” the data. We also wanted to make it easy for you to insert “control 

characters” so rather than you actually editing the data in place we allow you to click on the character you wish to edit 

and we then provide a dialog for you to choose your character from.  

Also on the above screenshot is the “Legend” dialog. This allows you to customise both the characters to use for 

unprintable characters AND the colours used for the display. This was you can have a window that reflects your own 

uniquely good aesthetical taste.  

 

Our intention is to make this utility available later this year. If you’d be interested in a beta copy then please email your 

request to support@sprezzatura.com.  



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 35 of 56 

An Introduction to the Use of OLE controls from OpenEngine – Part 2 ‐ 

Andrew McAuley 

In the last issue we examined the Basic+ statements available to us for manipulating OLE controls from the OpenEngine. 

We also looked at ways of exploring the wealth of OLE objects available for us to use from within our own programs. In 

this issue we’re going to look at a practical example of using OLE for Mail Merging. 

Exploring Using Macros 

One of the easiest ways of exploring automation using OLE is to acquire a rudimentary understanding of OLE 

Automation using a more common scripting language and then to convert this into the Basic+ equivalent.  By far the 

easiest way to achieve this is by using the Macro Recording capabilities of the software you are working with and then 

to examine this to see how to achieve your desired goal. So let’s start with a very simple example – opening a file and 

printing it. I’ll open the file we created earlier for the AREV example. 

Firstly we need to start recording the Macro 

 

So we choose the “Record Macro” option 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 36 of 56 

And open the file and print it. We can then stop the macro recording and examine what has been generated for us. 

 

 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 37 of 56 

Now looking at this it is obvious that the macro has recorded four “actions” :‐ 

 

Now to examine what this is actually doing we can make use of the IDE used to examine the Macro itself in conjunction 

with the MSDN online library. Let’s illustrate this step by step. 

ChangeFileOpenDirectory 

Firstly to find out what this is we can highlight the word and choose the menu option View/Definition 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 38 of 56 

This opens the Object Browser and shows us that ChangeFileOpenDirectory is a “Sub” – in OpenInsight terms a 

“Method” – so we know that to emulate this in Basic+ we’d need to use OLECallMethod. 

 

To find out what this method is used for we turn to the MSDN online library where it is defined thusly  :‐ 

 

From this we can (with the benefit of an additional helping of hindsight) work out that we don’t actually need to do this 

as we don’t want to force the File Open Dialog to use that Directory – rather when WE automate it we’ll provide the full 

path to the relevant file. 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 39 of 56 

Documents.Open 

Employing the same technique as before to get to the Object Browser and we see that this is a Function – again 

exposed using OLECallMethod. 

 

The object browser even helpfully provides us with the optional parameters – and as you can see most of the 

parameters are optional – indicated by being enclosed in [].  

MSDN again comes up trumps with this providing more details of what the parameters are used for. 

 

Even more straightforwardly – pressing F1 at this point brings up the online help 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 40 of 56 

Of course it’s not quite that straightforward.  Looking at “Format:=wdOpenFormatAuto” we can see that reference is 

being made to some form of constant – wdOpenFormatAuto. If we were going to reference this ourselves we’d need to 

know the value associated with this constant. But fortunately object browser springs to the rescue again showing that 

wdOpenFormatAuto has a value of 0. 

 

Even better it lists all the other possible values for this constant such as wdOpenFormatRTF being 3. 

  

 

ActivePrinter 

Using the object browser for this we see that this is a PROPERTY of the Application 

 

So mapping into Basic+ we know that we’d use the OLEPutProperty routine to set this. 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 41 of 56 

Application.Printout 

Combining all of the above and using the object browser, it’s a simple task to see that again this is a method, that 

wdPrintAllDocument has a value of 0 but could have other values to print ranges, the current page etc etc.  

Performing a Mail Merge 

So let’s put all of our new found knowledge to use and create a Subroutine that is passed the name of the Mail Merge 

document to print, along with the name of the data file to use in the merge. Let’s also optionally have this either show 

the merged documents for amendment and subsequent printing OR just print out the document directly to the printer. 

The first caveat as we begin our development is that at every step of the process we need to check for potential errors 

as there is no point in continuing if errors exist. It’s at times like this that we could really use an OnError GoSub 

construct. As it is we’ll just have to GoSub ErrorHandler after every OLE related call. 

The second caveat is that although OpenInsight provides us with a way of returning the OLE error, it doesn’t provide a 

mechanism for converting this error number into meaningful text. Needless to say it is not impossible to write your own 

such translator and at Sprezz we’ve embedded  this into one of our generic utility functions – you’ll see references to 

this in the code. 

So the first thing we need is our own error handling subroutine… 

 

First off we’ll show you what we mean about error numbers – let’s deliberately cause an OLE error by trying to start 

Word using a non‐existent class. 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 42 of 56 

 

This firstly uses OleStatus() to get the error number 

 

Then uses our in house utility to get a meaningful description 

 

Of course if you don’t have our utility you can always Google the number and get something like this 

 

Right so now we’ve shown how the error works let’s guide you through the process of constructing the merge. 

Remember we’re now dealing with instantiating Windows OLE Components so at every stage we’ll be making sure we 

get rid of what we’ve created.  



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 43 of 56 

What we’ll do is create a routine called ZZ_OLE_Word_Automation which takes four parameters – the name of the 

document to merge, the name of the data file to merge, the name of the file to save the resultant merge document as 

(if blank it won’t be saved) and finally a flag to indicate whether the merged document should be printed and closed or 

left on the screen. 

Starting the OLE Application 

To start an OLE application so that we can control it we use the OLECreateInstance routine. Note that in line with what 

we’ve just said we’ll be destroying the object after creating it. So that we can actually track what’s going on we’ll 

incorporate strategic DEBUG statements. So the first section of code looks like the following. Note that we’re going to 

debug after the create instance to check that it worked and then again after the QUIT command. Stating the obvious – 

the OleCreateInstance creates an instance of the Word Application and returns the handle in wordApp. We then 

subsequently use this handle to tell Windows which application to close.  

 

So before we run this program the relevant section of the task manager looks  like this 

 

So running this and stopping after the creation of the OLE instance and examining the relevant variables we get 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 44 of 56 

Note that at this stage wordApp contains an “idispatch” pointer – this is an internal reference which basically confirms 

that the operation worked. You can’t use the debugger to inspect the variable however. This shows that we have 

successfully “instantiated” Word for Windows as does the second “WINWORD.EXE” in the task manager. 

Now we move on to call the “QUIT” method against the handle for the word application and sure enough no errors 

register and the second copy of WINWORD disappears from the task manager. 

 

 

So our routine is successfully starting and stopping Word! 

Next up we have to get a handle to the DOCUMENTS property of the Word application so that we can give it 

instructions. To understand all of this you’re really going to have to become familiar with the Object Model of the Word 

application. As ever MSDN is your friend. 

 

So now we have TWO idispatch pointers – one for the Word application and one for the Documents property of the 

Word Application 

 

So we’re still making progress a step at a time. 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 45 of 56 

Let’s now try opening the appropriate document – we’ll modify the code to do the open 

 

And run the program telling it which file to open 

 

 

 

But painfully Word ISN’T on the task bar so we can’t see if it worked or not!  

 

So the next trick – solely for debugging purposes – is to tell Word that we want to be able to see it! By default OLE 

objects we instantiate don’t appear unless we ask them too so let’s add that in :‐ 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 46 of 56 

We’ve asked it to be “VISIBLE” and sure enough it’s on the task bar 

 

And visible 

 

OK so to review – from within OI we’re launching Word and opening a document. Now to do the mail merge… 

Hopefully by now you’re starting to trust that we know what we’re talking about – so having opened the correct 

document to mail merge we need to grab the handle to the MAILMERGE property so that we can tell it what the data 

source of the MAILMERGE object is :‐ 

once 

again we check that all is OK and if it is we set the data source 

This time we run passing in the data source 

 

And again all runs OK 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 47 of 56 

 

No errors. 

So we now need to tell the mail merge where it should create its output – should it go to the printer or to a new 

document? 

 

Of course to understand what we’re looking for we need to use the object browser to see what the possible values are 

for destination and choose accordingly 

 

 

 

And now that’s all set up we tell it to actually DO the mail merge 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 48 of 56 

 

Note that this time the merge document is actually created on screen 

 

Now at this point we have two documents – the mail merge document and the results thereof. So firstly let’s close the 

merge document – we know the handle for this as we explicitly opened it :‐ 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 49 of 56 

 

And now that is closed there is only one document open – the new one we have just mail merged to. The problem is 

that we don’t have any kind of reference for this document. The good news is that as it is the only Word document left 

it has become the “Active” document – so we can get a handle for it that way :‐ 

 

Having this handle we can now save the results file under another name if this was required :‐ 

 

 We’ll modify the call slightly to isolate the file being created. So we’ll move our test files to a new subdirectory and 

make the calls accordingly 

 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 50 of 56 

So we’re passing in a file to save as. We run this and sure enough 

 

As we’ve opted to use the destination of a new merged document we’ll need to print the document directly.  By 

recording a Macro we can easily see that the required command is PRINTOUT so we can modify our code accordingly 

 

And when we run our code now using 

 

Sure enough we get a saved document AND a printout. The final piece of the puzzle is to change our VISIBLE statement 

to be conditional upon the PrintAndClose flag :‐ 

 

 

 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 51 of 56 

Now if we run with this we get the printout BUT we have one final hurdle. The merged document has changed – so 

Word asks us if we want to save the changed document. This forces the process to become visible to the user. 

 

Naturally enough once more the object browser and the online help come to our rescue. Looking up the help for QUIT 

we see 

 

And using the object browser to examine the wdSaveOptions constants we get 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 52 of 56 

So we can modify our code to be as follows :‐ 

 

And running the code seamlessly prints our merge to the printer. 

Conclusion 

Hopefully in the course of these two articles we’ve been able to show that using OLE can be a lot easier than it at first 

appears. Naturally there are additional complexities – this is a beginner’s tutorial after all – but as you become more 

familiar with the medium and the support available to you with online resources we’re sure that you’ll find that you can 

become effective. And if you are stuck then don’t forget that here at Sprezz Towers we’re always  ready to provide cost 

effective Pay as You Go support! 

The complete code listing for this exercise follows :‐ 

Subroutine ZZ_OLE_Word_Automation(MergeDocument, DataSource, FileToSaveAs, 
PrintAndClose) 
/* 
 Author AMcA 
 Date  March 2007 
 Purpose To automate a mail merge using OLE 
   MergeDocument -> Name of the document To merge 
   DataSource    -> Name of the data file To merge from 
   FileToSaveAs  -> If this contains a filename the resultant  
                    merge will be saved as this 
   PrintAndClose -> If true the document will be printed Then 
                    Word will be closed. For the purposes of this 
                    routine If this is true Then Word will not 
                    be made visible 
*/ 
 
 Declare Function OleCreateInstance, OleGetProperty, OleStatus, zzx_Utility, 
Msg 
 Declare Subroutine OlePutProperty 
  
 wordApp = OleCreateInstance("Word.Application") 
 Gosub CheckError 
 If OleStatus Else 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 53 of 56 

  nexthandle = OleGetProperty(wordApp, "DOCUMENTS") 
  Gosub CheckError 
 End 
  
 If OLEStatus Else 
  If PrintAndClose Else 
   OlePutProperty(wordApp, "VISIBLE", 1) 
   Gosub CheckError 
  End 
 End 
 If OleStatus Else 
  documentHandle = OleCallMethod(nextHandle, "OPEN", MergeDocument) 
  Gosub CheckError 
 End 
  
 If OLEStatus Else 
  myMerge = OleGetPRoperty(documentHandle,"MAILMERGE") 
  Gosub CheckError  
 End 
  
 If OLEStatus Else 
  res = OleCallMethod(myMerge, "OPENDATASOURCE", DataSource) 
  Gosub CheckError 
 End 
  
 If OLEStatus Else 
  OLEPutProperty(myMerge, "DESTINATION", 0) 
  Gosub CheckError 
 End 
  
 If OLEStatus Else 
  res = OleCallMethod(myMerge, "EXECUTE") 
  Gosub CheckError 
 End 
 
 If OLEStatus Else 
  res2 = OleCallMethod(documentHandle, "CLOSE", 0) 
  Gosub CheckError 
 End 
  
 If OLEStatus Else 
  documentHandle2 = OleGetProperty(wordApp, "ACTIVEDOCUMENT") 
  Gosub CheckError 
 End 
  
 If OLEStatus Else 
  If Len(FileToSaveAs) Then  



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 54 of 56 

   res3 = OleCallMethod(documentHandle2, "SAVEAS", FileToSaveAs) 
   Gosub CheckError 
  End 
 End 
  
 If OLEStatus Else 
  If PrintAndClose Then  
   result = OleCallMethod(wordApp, "PRINTOUT",1) 
   Gosub CheckError 
   Quit = OleCallMethod(wordApp, "QUIT", 0) 
  End 
 End 
 
Return 
 
 
CheckError: 
  
 FullErrorText = "" 
 OleStatus = OleStatus() 
 If OleStatus Then   
  FullErrorText = ZZx_Utility("WINERROR", OleStatus)  
 End  
 
Return 

 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 55 of 56 

Changing Universal Driver Files to 2.1 Format – Aaron Kaplan 

The release of the Universal Driver 3.0 gave Linear Hash the ability to use larger frame sizes and larger OS file sizes.  To 

accommodate these changes, modifications to the primary frame header were required.  These changes made files 

created with the UD3 unusable with earlier drivers.  Sometimes developers have reason to access files created with the 

UD3 on earlier systems.  Perhaps they are sharing data with systems that have moved to the UD, they are receiving 

deployments from people or they have reverted to a prior version because of DEP issues.  As promised, we have 

created a utility to allow you to revert these files back to a pre UD3 header. 

 success = zz_revertLHfiles( directory, osErrorList, skippedFileList ) 

Parameters 

 
Input 

 
Directory This contains a directory path to convert.  All LK files in this directory will 

be examined for conversion 
  

 
Output 

 
osErrorList Returns an @FM delimited list of files that could not be processed 

because access was denied by the operating system.  Each file returned 
has an @VM delimited status list 
 

< 1, 1 >  Error Type ‐  Defines the type of OS Error that occurred 
 equ ERR_OSOPEN_ERR$ to 1 
 equ ERR_OSREAD_ERR$ to 2 
 equ ERR_OSWRITE_ERR$ to 3  
< 1, 2 > OS File Name (REV12345.LK) 

< 1, 3 > Frame number, if applicable 

< 1, 4 > Error code as returned from status() 

Please note that files in this list with write errors may now be corrupt. 
 

SkippedFileList Returns an @FM delimited list of files that could not be processed 
because access was denied by the operating system.  Each file returned 
has an @VM delimited status list 
 

< 1, 1 > OS File Name (REV12345.LK) 

< 1, 2 >  Reason this file was not converted. 
 equ ERR_FRAME_SIZE_TO_LARGE$ to 1 
 equ ERR_FRAME_HAS_EXT_INFO$ to 2 
 equ ERR_FRAME_NOT_UD3$  to 3 

  
  

Please use caution when using this utility and ensure you have a full backup of your system before running this against 

any active files.  Files may be locked at the OS level by the NT service, so you should stop the service before running this 

program.  Additionally, all users should be out of the system when the files are converting.  The logged in network user 

will require full access to the LK and OV files at the operating system level. 

The Checkout for this utility can be found at http://www.sprezzatura.com/downloads/revertlhfiles.zip 



Copyright © 2007 Sprezzatura Group All Rights Reserved 

Page 56 of 56 

  

Peripheral Trivia 

As this issue of S/ENL was put to bed we fed the inner man with: 

TV: Heroes again! 

Book: Pro Visual C++/CLI and the .NET 2.0 Platform. Stephen R G Fraser

CD: Three Dead Trolls In a Baggie – “Skit Happens”

WEB: http://www.prosperon.co.uk/lansurveyor‐network‐maps.htm

 

Join us : Send Mail to Admin@Sprezzatura.com with subject SUBSCRIBE SENL or 

complete our online registration form. 

Leave Us: Send Mail to Admin@Sprezzatura.com with subject UNSUBSCRIBE SENL

Change of Address:  Leave at the old address & join at the new one

Web Info: http://www.sprezzatura.com/

Tell us what you'd like to see in S/ENL: info@sprezzatura.com

 

 

 

 

COPYRIGHT NOTICE 

S/ENL ‐ ©2007 Sprezzatura Ltd. All rights reserved.. Portions copyright Microsoft Corporation Inc. Portions copyright Revelation 
Technologies, Inc. No portion of this journal (other than code segments) may be reproduced by any means, be it photocopied, 
digitised, transcribed, transmitted, reduced to any electronic medium or machine readable form, nor translated into any other 
language without the prior written consent of Sprezzatura Ltd or Sprezzatura, Inc. The moral rights of the authors have been 
asserted. 

Disclaimer ‐ Whilst every effort is made to ensure the accuracy of the information contained herein, neither Sprezzatura Ltd nor 
Sprezzatura Inc. can accept liability for the failure of anything documented herein to work nor for damage resulting from the 
application of methods/techniques learned herein. 
 

TRADEMARK NOTICE 

OpenInsight is a trademark of Revelation Technologies Inc. trading as Revelation Software. Microsoft, Windows™, and MS‐DOS are 
registered trademarks of Microsoft Corporation. All other product names are trademarks or registered trademarks of their respective 
owners. Printed in the United Kingdom. 

S/ENL Volume 4 Issue 4, 10th March 2007. 

Please encourage your correspondents to send e‐mail to admin@sprezzatura.com with SUBSCRIBE SENL in the subject line to get 
their own free subscription. Everyone is welcome! Tell your friends about S/ENL. 


